Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.

Identifieur interne : 000364 ( Main/Exploration ); précédent : 000363; suivant : 000365

Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.

Auteurs : Rui Yang [République populaire de Chine] ; Demei Meng ; Xiaosong Hu ; Yuanying Ni ; Quanhong Li

Source :

RBID : pubmed:24020787

Descripteurs français

English descriptors

Abstract

Trichoderma reesei and Phanerochaete chrysosporium with different lignocellulose-degrading enzyme systems have received much attention due to their ability to biodegrade lignocellulosic biomass. However, the synergistic effect of the two fungi on lignocellulose degradation is unknown. Herein, a cocultivation of T. reesei RUT-C30 and P. chrysosporium Burdsall for biodegradation of lignocellulosic pumpkin residues (PRS) was developed to produce soluble saccharide. Results indicated that a cocultivation of the two fungi with P. chrysosporium Burdsall inoculation delayed for 1.5 days produced the highest saccharide yield of 53.08% (w/w), and only 20.83% (w/w) of PRS were left after one batch of fermentation. In addition, this strategy increased the activities of secreted cellulases (endoglucanase, cellobiohydrolase, and β-glucosidase) and ligninases (lignin peroxidase and manganese peroxidase), which correlated to the increased saccharide yield. Besides, the resulting monosaccharides including glucose (1.23 mg/mL), xylose (0.13 mg/mL), arabinose (0.46 mg/mL), and fructose (0.21 mg/mL) from cocultures exhibited much higher yields than those from monoculture, which provides basal information for further fermentation research. This bioconversion of PRS into soluble sugars by cocultured fungal species provides a low cost method based on lignocellulose for potential biofuels or other bioproduct production.

DOI: 10.1021/jf402199j
PubMed: 24020787


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.</title>
<author>
<name sortKey="Yang, Rui" sort="Yang, Rui" uniqKey="Yang R" first="Rui" last="Yang">Rui Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Food Science and Nutritional Engineering, China Agricultural University , China Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Food Science and Nutritional Engineering, China Agricultural University , China Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meng, Demei" sort="Meng, Demei" uniqKey="Meng D" first="Demei" last="Meng">Demei Meng</name>
</author>
<author>
<name sortKey="Hu, Xiaosong" sort="Hu, Xiaosong" uniqKey="Hu X" first="Xiaosong" last="Hu">Xiaosong Hu</name>
</author>
<author>
<name sortKey="Ni, Yuanying" sort="Ni, Yuanying" uniqKey="Ni Y" first="Yuanying" last="Ni">Yuanying Ni</name>
</author>
<author>
<name sortKey="Li, Quanhong" sort="Li, Quanhong" uniqKey="Li Q" first="Quanhong" last="Li">Quanhong Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24020787</idno>
<idno type="pmid">24020787</idno>
<idno type="doi">10.1021/jf402199j</idno>
<idno type="wicri:Area/Main/Corpus">000350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000350</idno>
<idno type="wicri:Area/Main/Curation">000350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000350</idno>
<idno type="wicri:Area/Main/Exploration">000350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.</title>
<author>
<name sortKey="Yang, Rui" sort="Yang, Rui" uniqKey="Yang R" first="Rui" last="Yang">Rui Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Food Science and Nutritional Engineering, China Agricultural University , China Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Food Science and Nutritional Engineering, China Agricultural University , China Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meng, Demei" sort="Meng, Demei" uniqKey="Meng D" first="Demei" last="Meng">Demei Meng</name>
</author>
<author>
<name sortKey="Hu, Xiaosong" sort="Hu, Xiaosong" uniqKey="Hu X" first="Xiaosong" last="Hu">Xiaosong Hu</name>
</author>
<author>
<name sortKey="Ni, Yuanying" sort="Ni, Yuanying" uniqKey="Ni Y" first="Yuanying" last="Ni">Yuanying Ni</name>
</author>
<author>
<name sortKey="Li, Quanhong" sort="Li, Quanhong" uniqKey="Li Q" first="Quanhong" last="Li">Quanhong Li</name>
</author>
</analytic>
<series>
<title level="j">Journal of agricultural and food chemistry</title>
<idno type="eISSN">1520-5118</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cellulase (metabolism)</term>
<term>Cellulases (metabolism)</term>
<term>Cucurbita (microbiology)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Industrial Microbiology (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (metabolism)</term>
<term>Trichoderma (enzymology)</term>
<term>Trichoderma (metabolism)</term>
<term>beta-Glucosidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biocarburants (MeSH)</term>
<term>Cellulase (métabolisme)</term>
<term>Cellulases (métabolisme)</term>
<term>Cucurbita (microbiologie)</term>
<term>Microbiologie industrielle (MeSH)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Trichoderma (enzymologie)</term>
<term>Trichoderma (métabolisme)</term>
<term>bêta-Glucosidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
<term>Cellulases</term>
<term>Fungal Proteins</term>
<term>Peroxidases</term>
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cucurbita</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cucurbita</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
<term>Cellulases</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
<term>Trichoderma</term>
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Industrial Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocarburants</term>
<term>Microbiologie industrielle</term>
<term>Métabolisme glucidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trichoderma reesei and Phanerochaete chrysosporium with different lignocellulose-degrading enzyme systems have received much attention due to their ability to biodegrade lignocellulosic biomass. However, the synergistic effect of the two fungi on lignocellulose degradation is unknown. Herein, a cocultivation of T. reesei RUT-C30 and P. chrysosporium Burdsall for biodegradation of lignocellulosic pumpkin residues (PRS) was developed to produce soluble saccharide. Results indicated that a cocultivation of the two fungi with P. chrysosporium Burdsall inoculation delayed for 1.5 days produced the highest saccharide yield of 53.08% (w/w), and only 20.83% (w/w) of PRS were left after one batch of fermentation. In addition, this strategy increased the activities of secreted cellulases (endoglucanase, cellobiohydrolase, and β-glucosidase) and ligninases (lignin peroxidase and manganese peroxidase), which correlated to the increased saccharide yield. Besides, the resulting monosaccharides including glucose (1.23 mg/mL), xylose (0.13 mg/mL), arabinose (0.46 mg/mL), and fructose (0.21 mg/mL) from cocultures exhibited much higher yields than those from monoculture, which provides basal information for further fermentation research. This bioconversion of PRS into soluble sugars by cocultured fungal species provides a low cost method based on lignocellulose for potential biofuels or other bioproduct production. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24020787</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5118</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Journal of agricultural and food chemistry</Title>
<ISOAbbreviation>J Agric Food Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.</ArticleTitle>
<Pagination>
<MedlinePgn>9192-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jf402199j</ELocationID>
<Abstract>
<AbstractText>Trichoderma reesei and Phanerochaete chrysosporium with different lignocellulose-degrading enzyme systems have received much attention due to their ability to biodegrade lignocellulosic biomass. However, the synergistic effect of the two fungi on lignocellulose degradation is unknown. Herein, a cocultivation of T. reesei RUT-C30 and P. chrysosporium Burdsall for biodegradation of lignocellulosic pumpkin residues (PRS) was developed to produce soluble saccharide. Results indicated that a cocultivation of the two fungi with P. chrysosporium Burdsall inoculation delayed for 1.5 days produced the highest saccharide yield of 53.08% (w/w), and only 20.83% (w/w) of PRS were left after one batch of fermentation. In addition, this strategy increased the activities of secreted cellulases (endoglucanase, cellobiohydrolase, and β-glucosidase) and ligninases (lignin peroxidase and manganese peroxidase), which correlated to the increased saccharide yield. Besides, the resulting monosaccharides including glucose (1.23 mg/mL), xylose (0.13 mg/mL), arabinose (0.46 mg/mL), and fructose (0.21 mg/mL) from cocultures exhibited much higher yields than those from monoculture, which provides basal information for further fermentation research. This bioconversion of PRS into soluble sugars by cocultured fungal species provides a low cost method based on lignocellulose for potential biofuels or other bioproduct production. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Food Science and Nutritional Engineering, China Agricultural University , China Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Demei</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiaosong</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ni</LastName>
<ForeName>Yuanying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanhong</ForeName>
<Initials>Q</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Agric Food Chem</MedlineTA>
<NlmUniqueID>0374755</NlmUniqueID>
<ISSNLinking>0021-8561</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D044602">Cellulases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.21</RegistryNumber>
<NameOfSubstance UI="D001617">beta-Glucosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="Y">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044602" MajorTopicYN="N">Cellulases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028464" MajorTopicYN="N">Cucurbita</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007218" MajorTopicYN="N">Industrial Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014242" MajorTopicYN="N">Trichoderma</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001617" MajorTopicYN="N">beta-Glucosidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24020787</ArticleId>
<ArticleId IdType="doi">10.1021/jf402199j</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Hu, Xiaosong" sort="Hu, Xiaosong" uniqKey="Hu X" first="Xiaosong" last="Hu">Xiaosong Hu</name>
<name sortKey="Li, Quanhong" sort="Li, Quanhong" uniqKey="Li Q" first="Quanhong" last="Li">Quanhong Li</name>
<name sortKey="Meng, Demei" sort="Meng, Demei" uniqKey="Meng D" first="Demei" last="Meng">Demei Meng</name>
<name sortKey="Ni, Yuanying" sort="Ni, Yuanying" uniqKey="Ni Y" first="Yuanying" last="Ni">Yuanying Ni</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yang, Rui" sort="Yang, Rui" uniqKey="Yang R" first="Rui" last="Yang">Rui Yang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24020787
   |texte=   Saccharification of pumpkin residues by coculturing of Trichoderma reesei RUT-C30 and Phanerochaete chrysosporium Burdsall with delayed inoculation timing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24020787" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020